DESIGN FOR MANUFACTURE AND ASSEMBLY

History, an overview, and a design story

Nicholas P Dewhurst Boothroyd Dewhurst, Inc. 2019 October 1st, 2019

Nicholas P Dewhurst

Executive Vice President Boothroyd Dewhurst, Inc. ndewhurst@dfma.com (401) 783 5840 x 103

- Degree in Mechanical Engineering and Applied Mechanics
- Help clients understand the benefits of DFMA
- Apply DFMA to products on a consulting basis
- Helped companies around the world make DFMA part of their product development process

Boothroyd Dewhurst, Inc.

- Founded in 1981
- First Software in 1983
- 850 Companies from broad range of industries
- 1991 Winner of National Medal of Technology
- R&D continues today with new cost model development, new software interface design, and updated databases

What is DFMA?

A suite of tools used to analyze and understand the cost of a product's design and its constituent parts.

Typical Product Cost Breakdown

Where should your focus be?

PRODUCT SIMPLIFICATION

Our real time approach to product simplification unlocks the potential for part count reduction within your assemblies

PRODUCT COSTING

Looking at the alternative process and/ or material combinations that may lead to potential piece part cost savings

SUPPLIER COSTING

Using the outputs from our DFMA software to better negotiate price in a real time fashion

The Three main uses of DFMA

Sample Case study

Supplier Negotiations

"According to our Product Management team we will sell 190,000 of these clips a year. So, it seems that the software helped us to negotiate a savings of \$361,000 on this one item."

-VP of Engineering at a leading electronics company, May 2014

Challenge

Needed young project engineers to more actively support negotiations on high production volume products to ensure best possible price.

Solution

Use DFMA analysis to aide in the negotiation and apply information gathered from initial discussion to improve cost estimate accuracy in real time

Cost Result

- Cost of \$0.35 per part
- We get a detailed breakdown of the cost drivers
- Material
- Setup
- Process
- Rejects
- Tooling

Results – plastic clip assembly

- Annual Production Volume of 190,000
- ROI on software investment achieved on this single example
- Cost avoidance of \$361,000 annually

PRODUCT SIMPLIFICATION

Our real time approach to product simplification unlocks the potential for part count reduction within your assemblies

PRODUCT COSTING

Looking at the alternative process and/ or material combinations that may lead to potential piece part cost savings

SUPPLIER COSTING

Using the outputs from our DFMA software to better negotiate price in a real time fashion

The Three main uses of DFMA

Decisions decisions, what's a designer to do?

Part and manufacturing level decisions; "Product Costing"

- Cost is too high
- Corrosion is a problem
- Bending stiffness is critical and must be maintained
- Paint it, but what is the added cost?
- Might the paint crack around the mounting hole and allow for corrosion to begin?
- Make it from stainless, but what would that add in terms of cost?
- Make it from plastic but what would the tooling investment be and would we be able to maintain the stiffness requirement?


```
24 gage (0.61 mm) thick steel:
```

Alternative Designs

Cost of alternatives

Polyethylene; h = $0.61 (207,000/925)^{1/3}$ = 3.7 mmABS; h = $0.61 (207,000/2,100)^{1/3}$ = 2.8 mmPolycarbonate (30% glass); h = $0.61 (207,000/5,500)^{1/3}$ = 2.0 mm

Polymer Processing Data

Thermoplastic	Thermal diffusivity, ∞(mm²/s)	Injection temp., T _i (°C)	Mold temp., T _m (°C)	Ejection temp., T _x (°C)
H.D. polyethylene	0.11	232	27	52
Polypropylene (40% talc)	0.08	218	38	88
ABS	0.13	260	54	82
6/6 Nylon	0.10	291	91	129
Polycarbonate	0.13	302	91	127
Polycarbonate (30% glass)	0.13	329	102	141

 $t_c = 4 + 15 (w_t - 0.1) + kh^2$

where w_t = shot weight, kg

$$k = \frac{1}{\Pi^2 \propto} \log_e \frac{4 (T_i - T_m)}{\Pi (T_x - T_m)} \text{ sec.}$$

h = maximum wall thickness, mm

Examples

Polyethylene; k = 2.16 sec/mm² ABS; k = 1.74 sec/mm² PC (30% glass); k = 1.56 sec/mm² PP (40% talc); k = 1.93 sec/mm²

Criterion: Equivalent bending stiffness to 24 gage steel (0.61 mm)

Material	Thickness (mm)	Cooling time (sec)	Process cost*
Polyethylene	3.7	29.6	\$0.68
ABS	2.8	13.6	\$0.31
PC (30% glass)	2.0	6.2	\$0.14

* based on same machine; cooling time only

Injection Molding example material costs

2.0mm Wall Thickness 30% Glass PC \$2.60 / Lb. 2.8mm Wall Thickness ABS \$1.55 / Lb. 3.7mm Wall Thickness Polyethylene \$0.95 / Lb.

Final Design Decision Result

PRODUCT SIMPLIFICATION

Our real time approach to product simplification unlocks the potential for part count reduction within your assemblies

PRODUCT COSTING

Looking at the alternative process and/ or material combinations that may lead to potential piece part cost savings

SUPPLIER COSTING

Using the outputs from our DFMA software to better negotiate price in a real time fashion

The Three main uses of DFMA

DFA as a design decision tool

- Guides a team through a series of steps to ensure part count efficiency
- Simply changes rarely have dramatic impacts on cost
- People are generally risk averse and making significant changes is difficult
- Better to implement early in the design process so there isn't as much to change
- Payoff in upfront design time is tremendous, you just have to believe

DFMA: Product Simplification

Minimum Part Criteria

- Base Part / Chassis
- Fastening Function
- Connecting Function
- Different Material
- Relative Movement
- Assembly of Other Items

Handling & Insertion Difficulties

- Envelope Size
- Part Symmetry
- > Alignment
- Nest or Tangle
- Other Restrictions, etc.

Product Simplification

Product Simplification - Analysis

DFA Analysis Results

- 63 percent reduction in parts
- 4 suppliers removed from supply chain
- 63 percent reduction in detail drawings
- 74 percent reduction in assembly time
- Equal reduction in assembly labor cost

Boothroyd Dewhurst, Inc.

And let's not forget....

46% Reduction in Total Cost of the product

DFMA's Impact on Design Cycle

Boothroyd Dewhurst, Inc.

Source: Plastics Design Forum

Average DFMA Cost Reductions

Labor Costs	42%
Part Count	54%
 Separate Fasteners 	57%
Total Cost	50%
 Weight	22%
Assembly Time	60%
Assembly Cost	45%
 Assembly Tools	73%
 Assembly Operations	53%
Product Development Cycle	45%

Top ten responses quoted from over 170 case studies

Boothroyd Dewhurst, Inc.

(Presented in order of most commonly quoted responses)

Summary & Conclusions

- Cost information in the hands of purchasing is invaluable
- Trade offs in part design, manufacture, and material must be considered early in the development process
- Time to design 'simple' parts individually is less than more complex ones
- Cost impact of products made from lots of 'simple' parts can be significant
- Tooling investments are often seen as a barrier to entry but true understanding of actual costs are rare
- Cost of production of products made from 'simple' parts are surprisingly high
- Labor impact on production is usually not the focus but can sway decision making
- Cost tools should really be a requirement in the design decision process
- If you aren't using cost to make design decisions you really should
- Have engineers justify the cost of their designs

DESIGN FOR MANUFACTURE AND ASSEMBLY ANALYSIS

A Design Story

Nicholas P Dewhurst Boothroyd Dewhurst, Inc. 2019 October 1st, 2019

What's this story about

- Always looking for small simple products to analyze for examples
- Stumbled on this product years ago
- It has been redesigned over the years and I've kept up with it
- Makes a great DFMA example
- Allows for the calculation of total product cost
- This is a study of the evolution of this design

OFF! Clip•On

Released in 2008

FF!

Released in 2013

Released in 2017

OFF! Clip•On Original Design

Original Design

- Made in 2008
- Weighs 7.1 oz (Packaged weight)
- Measures 7.4" x 5.5" x 2.25" (Packaged dimensions)
- Uses two AA batteries
- Purchase price \$8.94

OFF! Clip•On Redesign A

Redesign A

- Made in 2013
- Weighs 4.3 oz (Packaged weight)
- Measures 5.75" x 4.75" x 1.75" (Packaged dimensions)
- Uses two AAA batteries
- Purchase price \$8.20

OFF! Clip•On Redesign B

Redesign B

- Made in 2017
- Weighs 4.0 oz (Packaged weight)
- Measures 5.5" x 4.625" x 2.00" (Packaged dimensions)
- Uses two AAA batteries
- Purchase price \$7.94

2008

\$8.94

2013

\$7.94

2017

- What are the manufacturing costs?
- Has it been profitable?
- Are there any interesting design features that have been employed?
- Have they improved over the years?
- What improvements have been made?
- What might have influenced some of the product changes?
- Could things have been done better or differently?

Original Design - comments

- Unit feels heavy
- All one color
- Plastic feels thick and substantial
- Packaging is 'complex'
 - Several inserts (coupon, instructions, etc.)
 - Large multi color printed cardboard
 - Relatively large clam shell package
- Simple, intuitive operation
- Simple to replace batteries
- Belt clip is fixed
- Belt clip is secured with a snap fit

Redesign A - comments

- Smaller lighter weight unit
- Now in two colors
- Plastic feels less thick but still substantial
- Packaging is smaller and more simple
 - No inserts
 - Smaller cardboard inserts but still two and with color printing
 - Smaller clam shell plastic package
- Simple, intuitive operation
- Simple to replace batteries
- Belt clip now rotates
- Uses AAA batteries rather than AA in original

Redesign B - Comments

- Unit is smaller still
- Now in three colors
- Plastic feels less thin, almost too thin
- Packaging is smaller and even more simple
 - Cardboard outside is part of the package
 - Two color printing on outside packaging still
 - Smaller simple thermoformed cup stuck to plastic
- Operation is simple but seems a little less intuitive
- Simple to replace batteries
- Belt clip still rotates
- Unit now incorporates an LED to show its on / low battery
- Still uses AAA batteries

Original Design Exploded View

DFMA Analysis Summary - Original

Entries including repeats	Original	
Parts meet minimum part criteria	11	
Parts are candidates for elimination	13	
Analyzed subassemblies	3	
Separate assembly operations	9	
Total entries	36	

Assembly labor time, s

Total assembly labor time	241.14
Separate assembly operations	60.75
Insertion of analyzed subassemblies	27.26
Parts are candidates for elimination	92.69
Parts meet minimum part criteria	60.44

16.52

Design efficiency

DFA Index

Per product costs, \$	Original
Assembly process	0.48
Manufacturing piece part	3.70
Total cost without tooling	4.18
Total tooling cost	0.10
Total cost	4.28

Total tooling investment, \$		
Assembly tools and fixtures	0	
Manufacturing tooling	101,101	
Total investment	101,101	

Production life data and weight

Life volume	1,000,000	
Total production life cost, \$	4,278,624	
Total weight, Ib	0.17	

Redesign A Design Exploded View

DFMA Analysis Summary – Redesign A

Entries including repeats	Redesign A	
Parts meet minimum part criteria	11	
Parts are candidates for elimination	7	
Analyzed subassemblies	3	
Separate assembly operations	12	
Total entries	33	

Assembly labor time, s

Parts meet minimum part criteria	69.53
Parts are candidates for elimination	46.20
Insertion of analyzed subassemblies	32.73
Separate assembly operations	69.29
Total assembly labor time	217.75

Design eniciency	
DFA Index	18.29

Per product costs, \$	Redesign A
Assembly process	0.43
Manufacturing piece part	3.23
Total cost without tooling	3.67
Total tooling cost	0.09
Total cost	3.76

otal tooling investment, \$		
Assembly tools and fixtures	0	
Manufacturing tooling	91,026	
Fotal investment	91,026	

Production life data and weight

Life volume	1,000,000	
Total production life cost, \$	3,756,731	
Total weight, Ib	0.13	

Redesign B Design Exploded View

DFMA Analysis Summary – Redesign B

Entries including repeats	Redesign B
Parts meet minimum part criteria	11
Parts are candidates for elimination	20
Analyzed subassemblies	1
Separate assembly operations	19
Total entries	51

Assembly labor time, s

Parts meet minimum part criteria	65.92		
Parts are candidates for elimination	153.90		
Insertion of analyzed subassemblies	3.54		
Separate assembly operations	116.31		
Total assembly labor time	339.68		
Design efficiency			
DFA Index	11.73		

Per product costs, \$	Redesign B		
Assembly process	0.67		
Manufacturing piece part	3.73		
Total cost without tooling	4.40		
Total tooling cost	0.07		
Total cost	4.47		

Total tooling investment, \$		
Assembly tools and fixtures	0	
Manufacturing tooling	74,787	
Total investment	74,787	

Production life data and weight

Life volume	1,000,000	
Total production life cost, \$	4,473,815	
Total weight, Ib	0.07	

DFA Analysis Comparison

Entries including repeats	Original	Redesign A	Redesign B
Parts meet minimum part criteria	11	11	11
Parts are candidates for elimination	13	7	20
Analyzed subassemblies	3	3	1
Separate assembly operations	9	12	19
Total entries	36	33	51

Assembly labor time, s

Parts meet minimum part criteria	60.44	69.53	65.92
Parts are candidates for elimination	92.69	46.20	153.90
Insertion of analyzed subassemblies	27.26	32.73	3.54
Separate assembly operations	60.75	69.29	1 <mark>16.3</mark> 1
Total assembly labor time	241.14	217.75	339.68

Design efficiency			
DFA Index	16.52	18.29	<mark>1</mark> 1.73

DFMA Analysis Comparison (sort of)

Per product costs, \$	Original	Redesign A	Redesign B
Assembly process	0.48	0.43	0.67
Manufacturing piece part	3.70	3.23	3.73
Total cost without tooling	4.18	3.67	4.40
Total tooling cost	0.10	0.09	0.07
Total cost	4.28	3.76	4.47
Total tooling investment, \$ Assembly tools and fixtures	0	0	0
Manufacturing tooling	101,101	91,026	74,787
Total investment	101,101	91,026	74,787
Production life data and weight Life volume	1.000.000	1.000.000	1,000,000

Lite volume	1,000,000	1,000,000	1,000,000
Total production life cost, \$	4,278,624	3,756,731	4,473,815
Total weight, Ib	0.17	0.13	0.07

DFMA Analysis – What's missing

• Packaging Costs

- Clam shell
- Boxing for shipping
- Instructions
- Shipping from China
- Labor for packaging 'assembly'
- Cost of 'Refill'

DFMA Analysis – Continued

DFM Concurrent Costing 3.1 [C:\Users\ndewhurst\O	neDrive - Boothroyd Dewhurst, Inc\2019 DFMA Confer	ence\DFM Files\Total Cost Comparison.dfmx]	- 🗆 X
File Edit Insert Analysis External Libraries Resul	its Help		
	- 🗅 🗱 📜 🌭 📏 🕽 🛛	P 🔇 🕐	
Original Redesign A Redesign B Original Clam Shell	Redesign A Clam Shell Redesign B Clam Shell		
Assembly fabrication/Polypropylene base	Part	Select process and material	
 Assembly fabrication process 	Part name Off Clip On Original	Select process and indentant	
Acquire and insert parts	Part number 2008	Notes	
Clam Shell Package O	Life volume 1,000,000		
Acquire and insert parts	Manufacturing profiles	Thumbnail picture	
Cardboard insert main	Current profile BDI China	Load file	
Acquire and insert parts	Current prome BDT china	Louis inc	
Cardboard insert cover	Select a different profile		
Acquire and insert parts	Envelope shape		
Off Clip On Original			
Acquire and insert parts			
Refu	Solid cylinder Hollow cylinder Solid block		
Acquire and insert parts			
Coupon 1			
Courses 2			
Box parts and tape box	Hollow block Stepped block		
Ship from China with import duty	Approximate envelope dimensions, in.		
	2.250 O Forming		
Cost results, \$			
Previous			
material 4.5199 4.6125			
setup 0.0003 0.0003			
process 0.9325 1.0303			
piece part 5.4548 5.6451	\sim		
tooling 0.1058 0.1058	5.500 🔘 15.000 🔘		
total 5.5606 5.7510	Average thickness 1.000		
Tooling investment 105,841 105,841			
Manufacturing profile: BDI China Total piece part co	st = \$5.6451 Total initial tooling investment = \$10	15,841 Total cost per part = \$5.7510	

DFMA Analysis – Total Cost Comparison

DFMA Analysis – What's different

24 Parts, 9 plastic parts, 9 operations

18 Parts, 10 plastic parts, 12 operations

31 Parts, 8 plastic parts, 19 operations

DFMA Analysis – What's different

PCB and wiring comparison

DFMA Analysis – What's different

Use of staking

DFMA Analysis – What's different

5 Screws

1 Screw

9 Screws

DFMA Analysis – How did they do?

	Mfg Cost	Price	Profit	Annual
Original	\$5.75	\$8.94	\$3.19	\$3,190,000
Redesign A	\$4.87	\$8.20	\$3.33	\$3,330,000
Redesign B	\$5.55	\$7.94	\$2.39	\$2,390,000

Estimated Annual Profit

What if they used DFMA back in 2008

Based on my study and applying DFA principles the following changes could theoretically be made:

- 1. Use snap fits to secure all parts
- 2. Remove PCB and wire to battery connectors like Redesign A
- 3. Remove LED
- 4. Motor attached to the 'front side' and held like Original design
- 5. Since product is round belt clip rotation seems unnecessary
- 6. 'Orange media disc' seem to have no function other than cosmetic so remove it
- 7. Maintain same packaging as Redesign B

DFA Analysis Comparison

Entries including repeats	Original	Redesign A	Redesign B	Redesign NPD
Parts meet minimum part criteria	11	11	11	11
Parts are candidates for elimination	13	7	20	3
Analyzed subassemblies	3	3	1	0
Separate assembly operations	9	12	19	10
Total entries	36	33	51	24

Assembly labor time, s

Parts meet minimum part criteria	60.44	69.53	65.92	69.69
Parts are candidates for elimination	92.69	46.20	153.90	28.07
Insertion of analyzed subassemblies	27.26	32.73	3.54	0
Separate assembly operations	60.75	69.29	116.31	57.87
Total assembly labor time	241.14	217.75	339.68	155.64

Design efficiency				
DFA Index	16.52	18.29	11.73	25.59

DFMA Analysis Comparison

Per product costs, \$	Original	Redesign A	Redesign B	Redesign NPD	
Assembly process	0.48	0.43	0.67	0.31	
Manufacturing piece part	3.70	3.23	3.73	3.03	
Total cost without tooling	4.18	3.67	4.40	3.34	
Total tooling cost	0.10	0.09	0.07	0.06	
Total cost	4.28	3.76	4.47	3.40	
Total tooling investment, \$ Assembly tools and fixtures	0	0	0	0	
Manufacturing tooling	101,101	91,026	74,787	64,555	
Total investment	investment 101,101		74,787	64,555	
Production life data and weight					
Life volume	1,000,000	1,000,000	1,000,000	1,000,000	
Total production life cost, \$	4,278,624	3,756,731	4,473,815	3,401,464	
Total weight, Ib	0.17	0.13	0.07	0.06	

DFMA Analysis – Total Cost Comparison

	Cost per part, \$								
	Life volume	Material	Setup	Process	Rejects	Piece part	Tooling	Total	Initial tooling investment
Original					-		· · · · · ·		
Assembly fabrication	1,000,000	4.6125	0.0003	1.0303	0.0021	5.6451	0.1058	5.7510	105,841
Polypropylene									
Redesign A									
Assembly fabrication	1,000,000	3.9036	0.0003	0.8652	0.0016	4.7708	0.0959	4.8667	95,904
Polypropylene									
Redesign B									
Assembly fabrication	1,000,000	4.3847	0.0003	1.0796	0.0011	5.4657	0.0794	5.5450	79,361
Polypropylene									
Redesign NPD									
Assembly fabrication	1,000,000	3.7477	0.0003	0.6675	0.0011	4.4166	0.0691	4.4857	69,129
Polypropylene									

DFMA Analysis – Total Cost Comparison

	Cost per part, \$								
	Life volume	Material	Setup	Process	Rejects	Piece part	Tooling	Total	Initial tooling investment
Original									
Assembly fabrication	1,000,000	4.6125	0.0003	1.0303	0.0021	5.6451	0.1058	5.7510	105,841
Polypropylene									
Redesign NPD									
Assembly fabrication	1,000,000	3.7477	0.0003	0.6675	0.0011	4.4166	0.0691	4.4857	69,129
Polypropylene									

A difference of \$1.2653 or 28.2% of \$12,653,000 since 2008 with no design changes

DFMA Analysis – Comments & Conclusions

- You can do this too with your own products
- You have to do the work to gain the knowledge and understanding
- Adding the LED caused issues with this product and demonstrates a lack of understanding of their manufacturing costs (maybe)
- How often does added complexity result, as it did here, with a simple marketing request to add a simple feature.
- How many companies actually understand the cost of added features
- Observe and document during your analysis process
- Question everything and learn for future product development