BOOTHROYD DEWHURST, Inc.

Designing for Additive Manufacturing: Three Use Cases in Industry

Skyler Hilburn

Materials Science and Engineering Ph.D. Candidate

Timothy W. Simpson

Paul Morrow Professor of Engineering Design and Manufacturing Director, Additive Manufacturing & Design Graduate Program Co-Director, Center for Innovative Materials Processing through Direct Digital Deposition (CIMP-3D) Penn State University, University Park, PA

 CIMP-3D is a world-class facility for developing and implementing additive manufacturing technology for *engineered* components

• Mission

- 1. <u>Advance enabling technologies</u> required to successfully implement AM technology for critical metallic components and structures
- 2. Provide technical <u>assistance to industry</u> through selection, demonstration, and validation of AM technology as an "honest broker"
- 3. Promote the potential of AM technology through <u>training</u>, <u>education</u>, <u>and</u> <u>dissemination</u> of information
- CIMP-3D served as the DARPA Open Manufacturing Program's Manufacturing Demonstration Facility for Additive Manufacturing

AM Demonstration Projects

Flight critical components

Dissolvable metal supports

		Powder Bed	Directed Energy Deposition		
		Fusion	Powder	Wire	
Energy Source	Laser	<image/>		<image/>	

For more details, see: http://www.cimp-3d.org/

CIMP-3D

5 © CIMP-3D@PSU 2019

"We aren't going to fly a 3D printed part because it's cool. It has to buy its way onto an engine just like any other part."

– William Brindley, Pratt & Whitney, 2016

Three DFAM Use Cases

Restrictive DFAM Examples

9 © CIMP-3D@PSU 2019

Opportunistic DFAM Examples

Source: William Brindley, 2016, Pratt & Whitney, approved for public release

Source: William Brindley, 2016, Pratt & Whitney, approved for public release

Source: William Brindley, 2016, Pratt & Whitney, approved for public release

Example from Arup

Source: <u>http://www.arup.com/news/2015_05_may/11_may_3d_makeover_for_hyper-efficient_metalwork</u>

Renishaw distinguishes between Adapt for AM (AfAM) and Design for AM (DfAM); both provide benefits over replicating a conventional part with AM

Source: <u>https://www.renishaw.com/en/dfam-strategy-create-design-space-for-maximum-am-impact--43420</u>

Spares and Repairs

Porsche Classic now supplies 3D printed parts for its classic cars (2/12/18)

Source:

https://newsroom.porsche.com/en/company/porsche-classic-3d-printer-spare-parts-sls-printer-production-cars-innovative-14816.html

Improved Logistics

Source: NAVAIR (Bill Frazier, Liz McMichael, et al.) & Penn State CIMP-3D (Ted Reutzel, Wes Mitchell, et al.) Images from 2016, *FF Journal*: <u>http://www.ffjournal.net/item/14034-the-latest-in-metal-additive-manufacturing-fabrication-and-forming-keeps-troops-well-equipped-and-prepared.html</u>

As Built vs. Finished Part

Crawl

<u>Why</u>? Agility

Examples: Spares & Repairs Legacy Parts & Tooling Functional Prototypes Supply Chain Leverage

<u>Why</u>? Agility

Examples: Spares & Repairs Legacy Parts & Tooling Functional Prototypes Supply Chain Leverage

Part Consolidation

Support design and drill ' guides added to facilitate finishing and assembly One AM part replaces 17 assembled parts New manifold is 70% lighter than original

Joint PSU-Navy project funded by DARPA Courtesy John Schmelzle, NAWC Lakehurst

Lattice Structures

1st FDA-approved 3D printed Titanium Acetabular Cup

By: Pipeline Orthopedic (Acquired by Stryker)

Source: Robert Cohen

Titanium "foam" speeds recovery and improves fixation of implant

Topology Optimization

New Formula SAE Upright:

- Same weight as older version
- Withstands larger loads
- Solidworks, TopOpt, and Ansys used for CAD, topology optimization, and FEA modeling

Specify design space, voids, and boundary conditions

Source: (Maranan, 2013)

28

Upright with Support Structures

Source: (Maranan, 2013)

Part	Z-Height	Exposure Volume (cm³)	Exposure Time (Hrs)	Recoat Time (Hrs)	Build Time (Hrs)
Right Support	148.59	412.28	24:48	5:35	30:23
Right Part	171.75	175.02	16:54	7:20	24:14
				Total	54:37

Part	Material	Volume (cm ³)	Loose Powder Inside Supports (cm ³)	Weight Total (Kg)	Cost (\$)
Right Support	Ti64	412.28	82.45	2.18	1482.40
Right Part	Ti64	175.02	N/A	.772	524.96

Note: More than 1/2 the build time and 3/4 of the cost is in the supports

Source: (Maranan, 2013)

Removed Supports

Source: (Maranan, 2013)

Generative Design tools help "grow" parts that are optimized for AM

Image Source

Next Step: Mapping Tools to Use Cases

BOOTHROYD DEWHURST, Inc.

Designing for Additive Manufacturing: Three Use Cases in Industry

Skyler Hilburn

Materials Science and Engineering Ph.D. Candidate

Timothy W. Simpson

Paul Morrow Professor of Engineering Design and Manufacturing Director, Additive Manufacturing & Design Graduate Program Co-Director, Center for Innovative Materials Processing through Direct Digital Deposition (CIMP-3D) Penn State University, University Park, PA

