Application of DFMA concept to evaluate the tooling cost for carbon fibre reinforced thermoplastic composites compression moulding processes

Mohamed El Wazziki*, Anh Dung Ngo*, Gilbert Lebrun **, Hugues Lessard**

*Laboratoire de fabrication et de caractérisation de matériaux composites, Department of Mechanical Engineering, École de Technologie Supérieure, 1100 Notre-Dame ouest, Montréal, Québec, Canada, H3C-1K3
**Département de génie mécanique, Université du Québec à Trois-Rivières, 3351, boul. des Forges, C.P. 500, Trois-Rivières (QC), Canada, G9A 5H7

The 28 th annual International Forum On Design for Manufacturing and Assembly

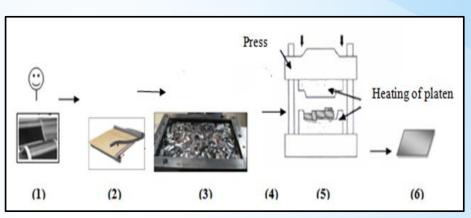
June12-14, 2013, Rhode Island, USA

Outline

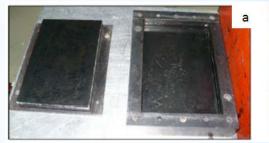
Background

- 1. Introduction
- 2. Composite parts manufacturing processing
- □ Flat plate
- a) Flat mould manufacturing
- b) DFM costs results and comparison
- Concave part
- a) Concave mould manufacturing
- b) Side lock manufacturing processing
- c) Mould base costs estimation
- d) DFM costs results and comparison
- 3. Conclusion

1. Introduction


- Carbon fibre reinforced thermoplastic composite has been an alternative to conventional materials in aerospace industry (major benefits)
- For the competitiveness, it is crucial to predict manufacturing costs of new product in design stage
- In research study a cost model has been developed to evaluate manufacturing costs of two types of parts (flat plate and concave part) made of carbon/PEEK by two compression moulding processes
- This study aims to use DFMA software of Boothroyd and Dewhurst Inc. to estimate the tooling costs for the parts made using these processes and to investigate the ability to extrapolate the moulds costs estimation to other part geometries

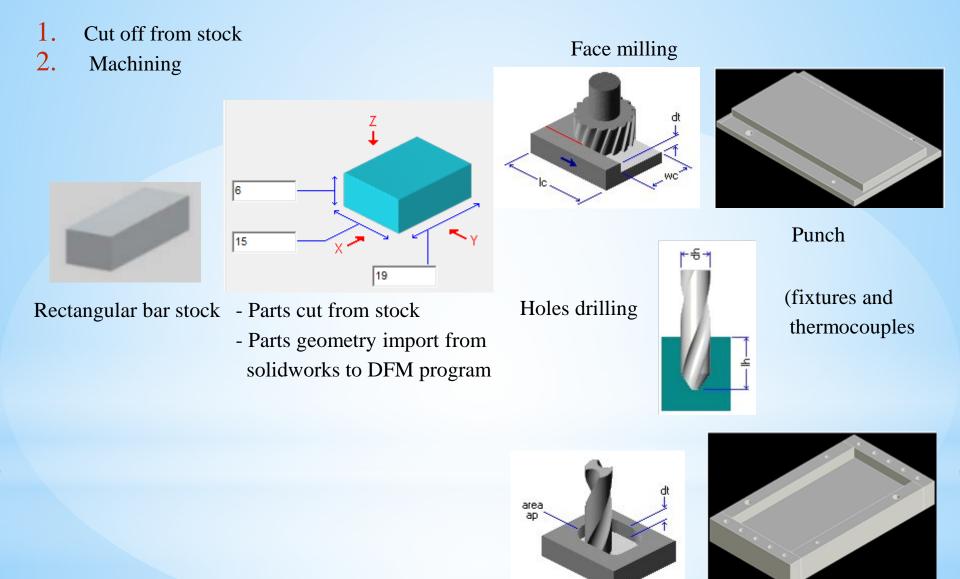
2. Composite parts manufacturing processing


Flat plate

- > Flat plate dimension: 280 mm x 185 mm x 6 mm
- > AS4/PEEK UD prepreg tape dimension: W = 304.8 mm
- Strands dimension: 25.4 mm x 12.7 mm x 6 mm
- > Flat plate manufacturing cycle:

(1) placing material in the cutter, (2) cutting of material into strands (manual cutter),
(3) distribution randomly of strands in the mould, (4) closure and transfer of the mould to the press,
(5) heating of platens and compression moulding of flat plate, (6) demoulding

Mould manufactured in IMI- NRC
 Mould material: carbon steel P-20



a) Two halves of the flat mould

b) manufactured flat plate

4

a) Flat mould manufacture processing

Pocket milling

Cavity 5

Flat mould features data

		Machining			Dim	ension				Repeat	Remarks
Mould	Features	operation	W	Lı	Dı	D ₂	<i>L</i> ₂	A	D 4	count	
			in	in	in	in	in	in²	in		
Punch	Faces	Rough and finish face milling	4	52	2,75	-	-	-		1	L ₁ = 19 x 2 + 7 x 2 = 52 in Breakdown of L ₁
	Holes	Drilling multiple holes	-	-	-	0,5	4	-	-	4	-
Cavity	Pocket	Rough and finishing single pocket end milling	-	-	-	-	-	77	3	1	A =11x7 = 77 in ^c
	Holes	Drilling multiple holes	-	-	-	0,5	4	-	-	10	-
Cavity and	All machined features	Polishing and buffing	All machined surfaces						5		
punch	All machined features	Inspection visually	All surfaces the mould								

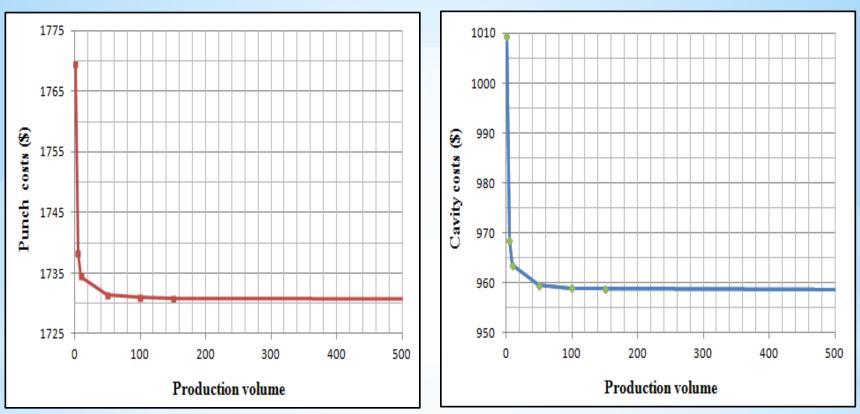
W: With of surface to be milled, L_1 : Total length of surface to be milled (faces and slots), D_1 : Total depth of material removed (faces and slots), L_2 : Length of drilled holes, D_2 : Diameter of drilled holes, A: Area of pocket (in²), D_4 . Total depth of material removed from pocket

b) DFM costing results

- Mould material is high carbon steel
- Labor rate used in the software is Cad \$75/hour

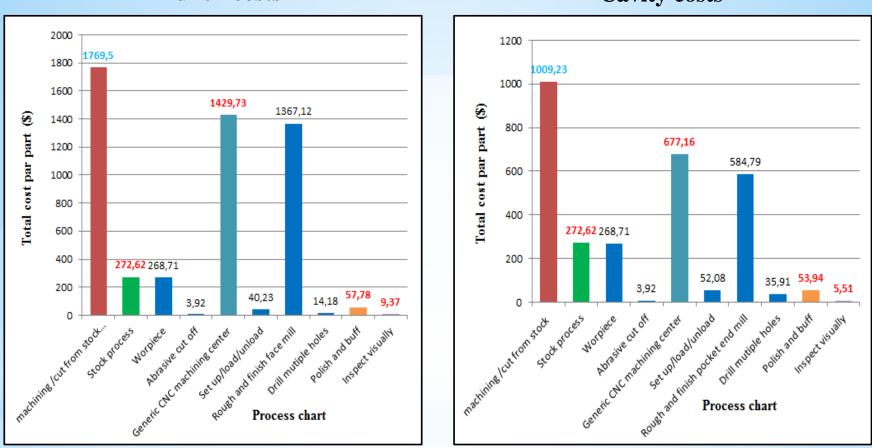
Cavity block costs

Punch block costs


Process chart	Total cost par part (\$)	Cost rate (%)	Process chart	Total cost par part (\$)	Cost rate (%)
machining /cut from stock process	1009,23	100	machining /cut from stock process	1769,5	100
Stock process	272,62	27,01	Stock process	272,62	15,4
Worpiece	268,71	26,62	Worpiece	268,71	15,18
Abrasive cut off	3,92	0,38		· · ·	ŕ
Generic CNC machining			Abrasive cut off	3,92	0,22
center	677,16	67,09	Generic CNC machining	1429,73	80,79
Set up/load/unload	52,08	5,16	center		, í
Rough and finish pocket			Set up/load/unload	40,23	2,27
end mill	584,79	57,94	Rough and finish face mill	1367,12	77,26
Drill mutiple holes	35,91	3,55	Drill mutiple holes	14,18	0,8
Polish and buff	53,94	5,34	Polish and buff	57,78	3,26
Inspect visually	5,51	0,54	Inspect visually	9,37	0,53

Flat mould costs vs. mould production volume

Punch block


Cavity block

- Starting from 100 components there is no variation of mould costs. There is approximately 50\$ of costs reduction.
- Consequently, composites parts production volume does not have a significant effect on the mould costs.

Flat mould costs breakdown

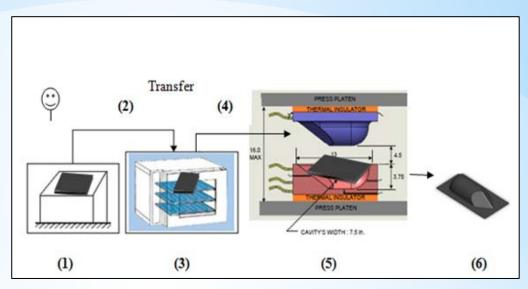
Punch costs

Cavity costs

- The total cost per part is strongly dominated by the machining costs of two studied cases due to highest rate of milling costs
- The Machining costs for the punch are higher than for the cavity due to higher time to machine the great features geometry made in punch

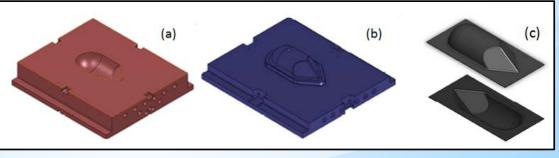
DFM and workshop tooling cost estimation comparison

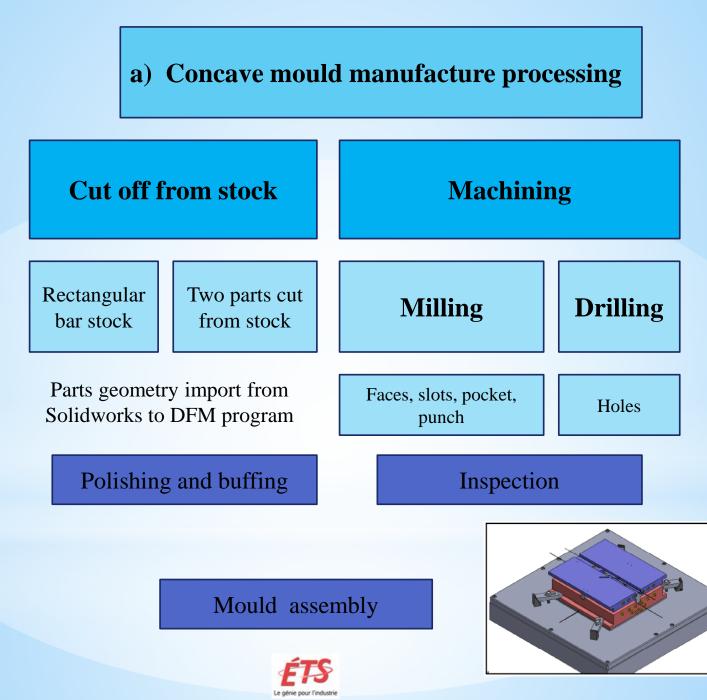
Item	DFM	Workshop
Material costs (\$)	542,82	540,00
Manufacturing costs(\$)	2235,91	2325,00
Nickel coating (\$)	-	600,00


 The flat mould the costs estimated by DFM software are close to that of workshop except Nickel coating costs which cannot be estimated by the DFM software

2. Composite parts manufacturing processing

Concave part


- Concave part dimension: 6 mm x 152.4 mm x 4 mm
- Material: laminate of continuous fibre prepreg plies of carbon/PEEK
- Concave part manufacturing cycle:



(1)preparation of flat plate, (2) placing the plate in the IR oven, (3) heating the plate in the IR oven, (4) transfer of heated plate to press, (5) compression moulding of part, (6) demoulding of the cooled part

Mould manufactured by
 PCM Innovation company,
 contractor of UQTR

Features manufacturing data

Punch block

	Machining				Dimen	sion (in)				Repeat	
Features	operation	w	L ₁	D1	D_2	L2	D;	d	L;	count	Remarks
		4,1	25	1,568						2	
		3,1	3,3	1,568						1	
		2,9	3,3	1,568						1	
	Rough and finish face milling	0,75	25	0,7						2	Calculated curvature surfaces are supposed to be neglected
Faces		0,722	1,09	1,568						1	To mill remaining spherical faces
		0,764	3,84	1,568						1	To mill remaining slanted faces
		3,3	6,5	0,435						1	To mill the punch
Slots	Rough and finish multiple	0,492	1,25	0,742						4	W and D ₁ are changed because of surface curvature
	slot end milling	1,63	12,5	0,375						1	
		0,25	1,37 9	0,25						1	
					0,5	6,13				12	
	Drilling multiple holes				0,164	0,625				8	
					0,164	0,625				8	
					0,5	2,175				1	
	Drilling single				0,307	0,125				1	
	hole		L		0,5	2,25	L			1	
					0,5	3,25	0.105	0.005		1	
							0,125	0,063	1,8	1	
Holes	Counter-drilling						0,125	0,063	0,76	1	
	single holes						0,125	0,063	1,55	1	
							0,125	0,003	0,563	1	
							0,414	0,307	0,187	1	
All machined features	Polishing and buffing	All machined surfaces									
All machined features	Inspecting visually		All surfaces of punch block								

W: With of surface to be milled, L_1 : Total length of surface to be milled (faces and slots), D_1 : Total depth of material removed (faces and slots), L_2 : Length of drilled holes, D_2 : Diameter of drilled holes, L_3 : Length to be counterdrilled, D_3 : Diameter of counterdrill, d: Diameter of hole to be counterdrilled,

Features manufacturing data

Cavity block

-	Machining				Dime	nsion (in)						Repeat	
Features	operation	w	W L ₁ D ₁ D ₂ L ₂ D ₃ d L ₃							A	D.	count	Remarks
Faces	Rough and finish face milling	0,750	25	1,688								2	Calculated curvature surfaces are supposed to be neglected
Slots	Rough and finish multiple slot end milling	0,563	0,744	0,432								4	W and D ₁ are changed because of surface curvature
	Rough and finish	0,25	5,348	0,25								1	
	single slot end milling	0,188	7,878	0,125								1	
					0,5	6,13						16	
					0,5	3,88						2	
	Drilling multiple				0,5	3,38						2	
	holes				0,032	1,46						2	
					0,032	0,96						2	
					0,032	0,86						4	
					0,063	3,45						1	
					0,063	4,11						1	
	Drilling				0,188	9,2						1	
	single hole				0,063	1,48						1	
					0,063	2,1						1	
					0,063	0,37						1	
							0,125	0,063	2,95			1	
Holes							0,125	0,063	3,61			1	
110102							0,33	0,19	0,46			1	
	Counter-						0,405	0,332	0,27			1	
	drilling single						0,332	0,188	0,46			1	
	holes						0,125	0,063	1,13			1	
							0,125	0,063	1,75			1	
							0,125	0,063	0,56			1	
	Counter-						0,38	0,159	0,2			8	
	drilling multiple holes						0,159	0,032	0,66			8	
Pocket	Rough and finish single pocket end milling									8,33	1,2	1	Concavity form is converted to standard geometry
	Polishing and buffing						All ma	chined sur	faces				
All machi- ned features	Inspecting visually		All surfaces of the cavity block										

W: With of surface to be milled, L_1 : Total length of surface to be milled (faces and slots), D_1 : Total depth of material removed (faces and slots), L_2 : Length of drilled holes, D_2 : Diameter of drilled holes, L_3 : Length to be counterdrilled, D_3 : Diameter of counterdrill, d: Diameter of hole to be counterdrilled, A: Aera of pocket (in²), D_4 : Total depth of material removed from pocket

b) DFM costing results

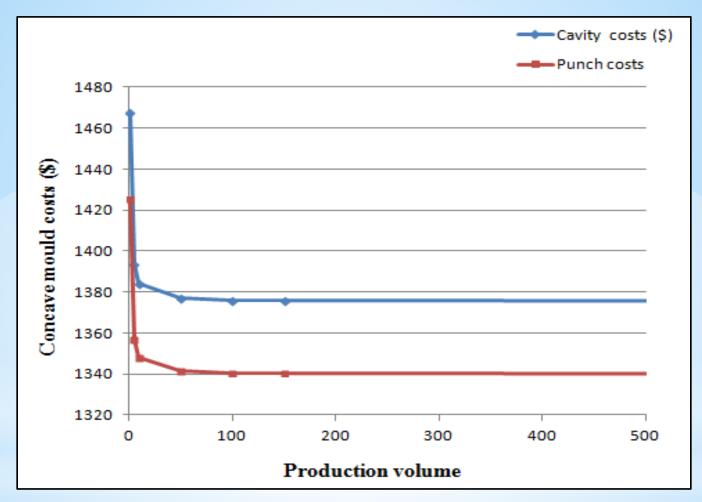
- Mould material is high carbon steel
- Labor rate used in the software is Cad \$75/hour

Punch block costs


Cavity block costs

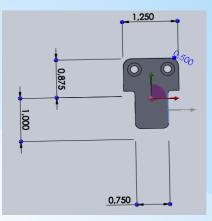
Process chart	Total cost per part (\$)	Cost rate (%)	
machining /cut from stock process	1425,33	100	
Stock process	67,15	4,71	
Worpiece	63,28	4,43	
Abrasive cut off	3,87	0,27	
Generic CNC machining center	1167,5	81,91	
Set up/load/unload	86,96	6,1	
Rough and finish face mill	631,96	44,33	
Rough and finish multiple slot end mill	124,38	8,72	
Drill single holes	23,39	1,64	
Drill mutiple holes	270,07	18,94	
Counterdrill single hole	25,05	1,75	
Polish and buff	183,56	12,87	
Inspect visually	7,12	0,5	

Process chart	Total cost per part (\$)	Cost rate (%)		
machining /cut from stock process	1467,45	100		
Stock process	53,88	3,67		
Worpiece	50,02	3,4		
Abrasive cut off	3,86	0,26		
Generic CNC machining center	1183,43	80,64		
Set up/load/unload	93,63	6,38		
Rough and finish pocket end mill	149,07	10,15		
Rough and finish face mill	84,15	5,73		
Rough and finish single slot end mill	32,12	2,18		
Rough and finish multiple slot end mill	34,22	2,33		
Drill single holes	232,46	15,84		
Drill mutiple holes	456,43	31,1		
Counterdrill single hole	77,01	5,24		
Counterdrill multiple holes	18,64	1,27		
Polish and buff	222,78	15,18		
Inspect visually	7,36	0,5		


Concave mould costs breakdown

- The total cost per part is strongly dominated by the machining costs of two studied cases due to highest rate of milling costs
- The Punch machining costs are close to that of the cavity due to the approximate machining time between them

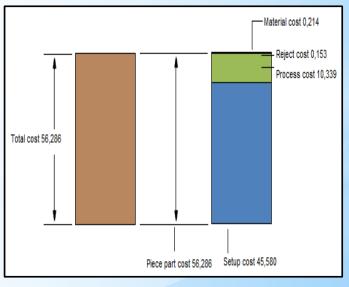
Concave mould costs vs. production volume



- Starting from 100 components there is no variation of mould costs. There is approximately 50\$ of costs reduction.
- Consequently, composites parts production volume does not have a significant effect on the mould costs.

Side lock manufacturing processing

- ➢ 4 Parts dimension cut from stock (in): 1,625 x 1,25 x 0,5
- 2 faces milling and 2 holes drilling operations
- Side lock material: carbon steel H -13



The side lock design

	Machinin			Di			Repeat	Remarks			
Features	g	W	L ₁	D ₁	D ₂	L_2	D ₃	d	L_3	count	Kennarks
	operation in										
	Rough and	0,255	0,875	0,5	-	-	-	-		2	W is changed because of surface curvature
Faces	finish face milling	0,05	0,15	0,5						2	Curvature form is converted to standard geometry
	Drilling multiple holes	-	-	-	0,171	0,5	-	-		2	-
Holes	Counter- drilling multiple holes						0,313	0,171	0,164	2	
All machined features	Polishing and buffing		All machined surfaces								
All machined features	Inspection visually		All surfaces of the part								

Side lock features manufacturing data

Side lock costs breakdown

Mould base cost estimation

> The mould base costs can be estimated theoretically by Boothroyd and als:

 $C_{b} = 1000 + 0.45 A_{c} h_{p}^{0.4}$

- For comparaison of the quotations for the mould base to the theoretical costs, this formula is adapted to the actual industrial Canadian costs by linear regression
- Using mould base costs for different standard mould sizes of both flat and concave geometries.

$_{b}$ is mould base costs (\$), c is the area of mould base	Mould base	Area (in²)	h _p (in)	$\mathbf{A_c} \mathbf{h_p}^{0,4}$	Canadian prices (2013)(\$)	
wity plate (in ²)		15,875 x 20	2,375 x 2	592,13	5810	
, the combined thickness of cavity nd punch plate (in)	Flat	15,875 x 23,5	2,375 x 2	695,75	6612	
		13,375 x 15	1,375 x 2	300,73	3942	
	Concave	13,375 x 18	1,375 x 2	360,88	4456	
		13,375 x 20,750	1,875 x 2	470,89	5296	

Mould base Canadian prices are estimated by:

 $C_{b} = 1239,78 + 7,72 A_{c} h_{p}^{0,4}$ $C_{b} = 1575,7 + 7,92 A_{c} h_{p}^{0,4}$

 C_b A_c cav h_p

DFM and commercial cost estimation comparison for the concave part tooling

Item	DFM	Commercial
Mould costs (\$)	2892,78	-
Mould base (\$)	4564,66	
Side locks (\$)	56,286	_
Manufacturing costs (\$)	7513,72	15145,00

- The cost results show a significant difference between costs estimated by DFM software and those of the commercial contractor.
- The commercial price of the concave mould comprised many elements such as taxes, shipping, labour rate, return on investment of the company, etc...

3. Conclusion

- For flat and concave moulds, costs decrease with increasing mould production volume
- > The threshold of the moulds costs is approximately 100 components
- Due to the highest cost rate of the milling operations, the machining cost is the most important cost element in the total costs for the two studied cases
- For the flat mould, the costs estimated by DFM software are close to that of internal workshop except Nickel coating costs which cannot estimated by the DFM software
- For the concave mould, the cost results show a significant difference between the costs estimated by DFM software and those of the commercial contractor
- ➤ The obtained cost results for the flat and concave moulds by DFM costs estimating software can be extrapolated for other similar mould geometries.

Acknowledgements

- Natural Sciences and Engineering Research Council of Canada
- Consortium for Research and Innovation in Aerospace in Quebec
- Industrial Material Institute- National Research Council of Canada
- École de technologie supérieure
- Mechanical Engineering Department at McGill University
- ➢ Bell Helicopter Textron Canada Ltd.
- Bombardier Inc.
- Pratt and Whitney Canada Corp.
- Marquez Transtech Ltd.
- Delastek Inc.
- > Avior Integrated Products Inc.

