

Modular Design...A Path to Rapid Customer Response

by

Kevin Dailida

Sr. Director of Operations and Supply Chain

Topics

Introduction

- Vertex ™ DFMA: Early Stages
- Postponement Theory: Flexibility in design
- Transition to modularity: Comparison of old and new designs
- Manufacturing benefits: Reaping the rewards of a great design
- Closing Remarks

Our Products

Introduction

DFMA does not happen overnight (Culture / Process)

Vertex[™] DFMA...The Early Stages

- Dynisco's core product consists of a filled sensor that is utilized in the plastic extrusion industry to measure pressure & temperature
 - Oil
 - Hg
 - NaK
 - Push Rod (mechanical)

- Last 20 years efforts have been underway to develop an equivalent non filled sensor
- The Vertex[™] project was identified as an opportunity to achieve the non filled objective and utilize DFMA to improve the design

Multi-functional design teams were key to success

Vertex[™] DFMA...The Early Stages

RODE

Sensor tip assembly was first big win for team

Vertex[™] DFMA...The Early Stages

RODER

Multiple iterations drove significant results

Traditional Stocking

- Inventory stocked at finished goods level
- High inventory qty
- High inventory costs

Postponement Stocking

- Inventory stocked at sub assembly levels
- Higher flexibility
- Lower inventory costs

Postponement Value Cost Comparison Roper

Traditio	nal Model			
Material	Material Cost	Labor Cost		
Sub A	\$50	\$25		
Sub A	\$50	\$25		
Sub A	\$50	\$25		
Sub A	\$50	\$25		
Component B	\$10			
Component C	\$10		Labor Applied to	
Component D	\$5		generate finished	
Component E	\$5		goods stock	
Finished Goods A with B		\$13	goodo otook	
Finished Goods A with C		\$13		
Finished Goods A with D		\$13		
Finished Goods A with D		\$13		
Total Inventory Value	\$230	\$150	\$380	
Postpone	ment Model			
Material	Material Cost	Labor Cost		
Sub A	\$50	\$25		
Sub A	\$50	\$25		
Sub A	\$50	\$25		
Sub A	\$50	\$25	Labor still applied	
				Difference in cost
Component B	\$10		but only when	13%
Component C	\$10		ready to ship to	
Component D	\$5		customer	
Component E	\$5			
component L	رې		7	
Finished Goods A with B				
Finished Goods A with C				
Finished Goods A with D				
Finished Goods A with D				
I Inventory Value	\$230	\$100	\$330	
				

Modularity & Benefits

- Pressure, Snout and Flex all locked in at sub assy level
- Legacy design limited from flexibility level

Modularity & Benefits

- Pressure, snout, flex and electronics all independent
- Maximum configuration flexibility for customer orders
- Reduced inventory value

Modularity & Benefits

- Pressure, snout, flex and electronics all independent
- Maximum configuration flexibility for customer orders
- Reduced inventory value

Manufacturing Benefits

- In addition to reduced inventory costs and flexibility, modularity drove the ability to establish kanban systems
- A pull system was much easier to establish as a result of the various sub assembly stocking levels
- The requirement for storage was significantly reduced as compared traditional stocking models
- Manufacturing lead times were reduced by 40% as a direct result of modularity and postponement

Manufacturing Benefits

- In addition to reduced inventory costs and flexibility, modularity drove the ability to establish kanban systems
- A pull system was much easier to establish as a result of the various sub assembly stocking levels
- The requirement for storage was significantly reduced as compared traditional stocking models

- Design for Manufacture and Assembly has paid huge dividends for Dynisco
- Vertex product has evolved both technically and from a manufacturing perspective by utilizing modularity
- Engineers and designers have a significant influence on the ability to control inventory costs and customer responsiveness before the product is launched and turned over to operations.

Thank you for your attention

Kevin.Dailida@Dynisco.com